Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cytoskeleton (Hoboken) ; 75(5): 201-212, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29466836

RESUMO

Epithelial-mesenchymal transition (EMT) is an important process that mediates organ development and wound healing, and in pathological contexts, it can contribute to the progression of fibrosis and cancer. During EMT, cells exhibit marked changes in cytoskeletal organization and increased expression of a variety of actin associated proteins. Here, we sought to determine the role of caldesmon in mediating EMT in response to transforming growth factor (TGF)-ß1. We find that the expression level and phosphorylation state of caldesmon increase as a function of time following induction of EMT by TGFß1 and these changes in caldesmon correlate with increased focal adhesion number and size and increased cell contractility. Knockdown and forced expression of caldesmon in epithelial cells reveals that caldesmon expression plays an important role in regulating the expression of the myofibroblast marker alpha smooth muscle actin. Results from these studies provide insight into the role of cytoskeletal associated proteins in the regulation of EMT and may suggest ways to target the cell cytoskeleton for regulating EMT processes.


Assuntos
Proteínas de Ligação a Calmodulina/biossíntese , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Animais , Citoesqueleto/metabolismo , Células Epiteliais/citologia , Feminino , Camundongos , Miofibroblastos/citologia
2.
Acta Biomater ; 43: 101-111, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27431877

RESUMO

UNLABELLED: One well-established cause of ischemic stroke is atherosclerotic plaque rupture in the carotid artery. Rupture occurs when a tear in the fibrous cap exposes highly thrombogenic material in the lipid core. Though some fibrous cap material properties have been measured, such as ultimate tensile strength and stress-strain responses, there has been very little, if any, data published regarding the fracture behavior of atherosclerotic fibrous caps. This study aims to characterize the qualitative and quantitative fracture behavior of human atherosclerotic plaque tissue obtained from carotid endarterectomy samples using two different metrics. Uniaxial tensile experiments along with miniature single edge notched tensile (MSENT) experiments were performed on strips of isolated fibrous cap. Crack tip opening displacement (CTOD) and stress in the un-cracked segment (UCS) were measured at failure in fibrous cap MSENT specimens subjected to uniaxial tensile loading. Both CTOD and the degree of crack blunting, measured as the radius of curvature of the crack tip, increased as tearing propagated through the tissue. Higher initial stress in the UCS is significantly correlated with higher collagen content and lower macrophage content in the fibrous cap (ρ=0.77, P=0.009; ρ=-0.64, P=0.047; respectively). Trends in the data show that higher CTOD is inversely related to collagen content, though the sample size in this study is insufficient to statistically substantiate this relationship. To the authors' knowledge, this is the pioneering study examining the fracture behavior of fibrous caps and the first use of the CTOD metric in vascular tissue. STATEMENT OF SIGNIFICANCE: A tear in the fibrous cap of atherosclerotic plaque can lead to ischemic stroke or myocardial infarction. While there is some information in the literature regarding quantitative measures of fibrous cap failure, there is little information regarding the behavior of the tissue during failure. This study examines the failure behavior of fibrous caps both qualitatively, by examining how and where the tissue fails, and quantitatively, by measuring (a) crack tip opening displacement (CTOD) in vascular tissue for the first time and (b) uniaxial stress in the un-cracked segment (UCS). This study shows that both metrics should be evaluated when assessing plaque vulnerability.


Assuntos
Placa Aterosclerótica/patologia , Placa Aterosclerótica/fisiopatologia , Estresse Mecânico , Resistência à Tração , Idoso , Idoso de 80 Anos ou mais , Artérias Carótidas/patologia , Artérias Carótidas/cirurgia , Endarterectomia das Carótidas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Placa Aterosclerótica/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...